ConsRec: Learning Consensus Behind Interactions for Group Recommendation

Xixi Wu 21210240043@m.fudan.edu.cn Shanghai Key Laboratory of Data Science, School of Computer Science, Fudan University Shanghai, China Yun Xiong*
yunx@fudan.edu.cn
Shanghai Key Laboratory
of Data Science, School of
Computer Science, Fudan
University
Shanghai, China

Yao Zhang yaozhang@fudan.edu.cn Shanghai Key Laboratory of Data Science, School of Computer Science, Fudan University Shanghai, China Yizhu Jiao yizhuj2@illinois.edu University of Illinois at Urbana-Champaign IL, USA

Jiawei Zhang
jiawei@ifmlab.org
IFM Lab, Department of
Computer Science,
University of California,
Davis
CA, USA

Yangyong Zhu yyzhu@fudan.edu.cn Shanghai Key Laboratory of Data Science, School of Computer Science, Fudan University Shanghai, China

Philip S. Yu psyu@uic.edu University of Illinois at Chicago IL, USA

WWW 2023

Code&data: https://github.com/FDUDSDE/WWW2023ConsRec

Reported by Nengqiang Xiang

Introduction

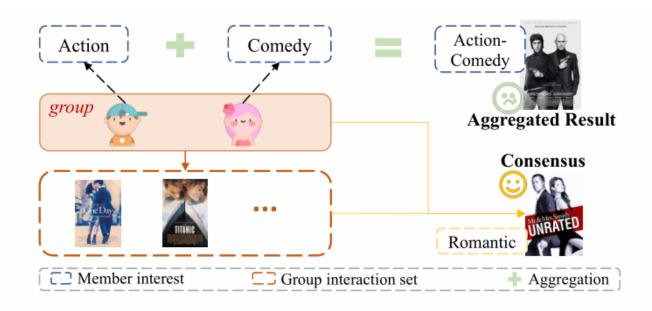


Figure 1: An illustrative example of the gap between aggregated result and group's consensus. Merely aggregating diverse members' interests lacks the holistic consideration of the group's overall taste, failing to capture the consensus.

Existing individual information aggregation lacks a holistic group-level consideration, failing to capture the consensus information. Besides, their specific aggregation strategies either suffer from high computational costs or become too coarse-grained to make precise predictions.

In this paper, the author explores the group consensus behind the interaction between group-item and user-item, and proposes a new model named ConsRec to address these limitations accordingly.

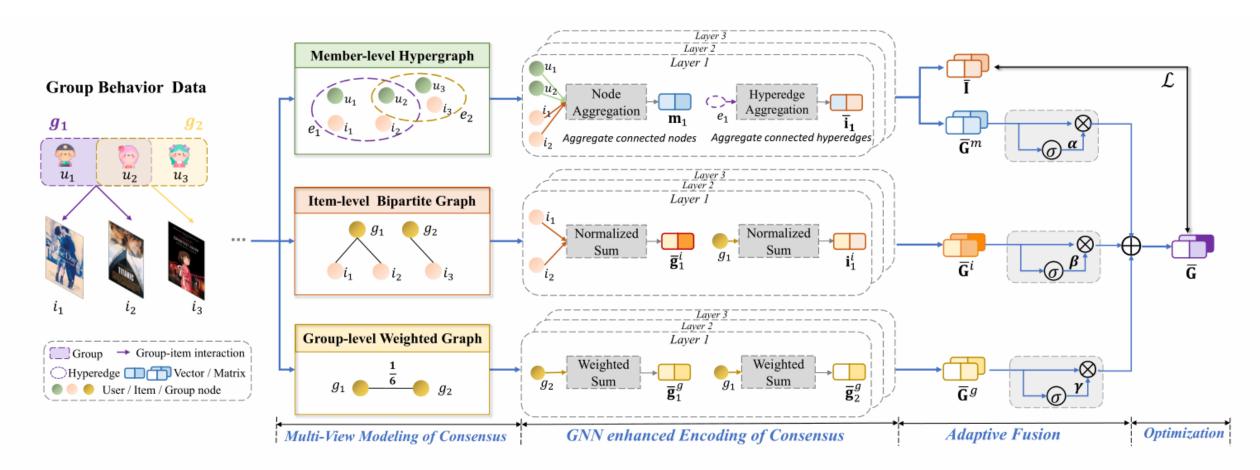
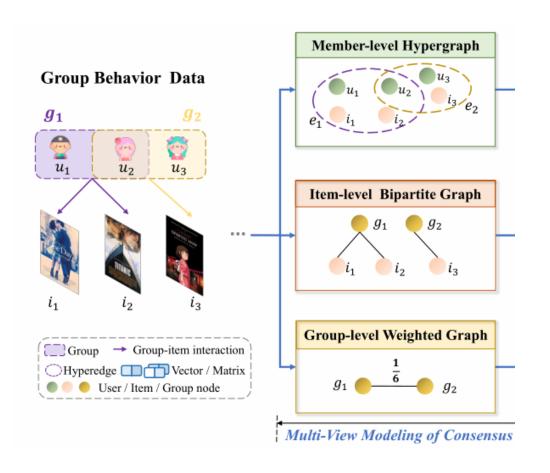


Figure 2: ConsRec Overview. We construct three distinct views for consensus modeling and adopt specific graph neural networks for representation learning. We further integrate these view-specific representations for group-item prediction.



PRELIMINARIES:

user set:
$$\mathcal{U} = \{u_1, u_2, ..., u_M\}$$

item set:
$$I = \{i_1, i_2, ..., i_N\}$$

group set:
$$G = \{g_1, g_2, ..., g_K\}$$

The t-th group of user:

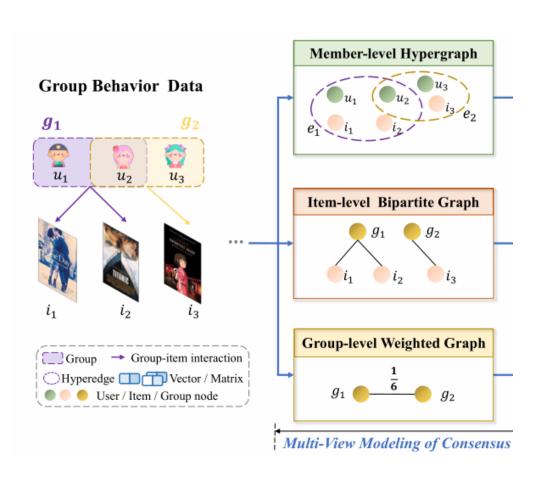
$$G_t = \{u_1, u_2, ..., u_s, ..., u_{|G_t|}\}$$

group-item interactions:

$$\mathbf{Y}(t,j) = 1$$

User set:

$$\mathcal{Y}_t = \{i_1, i_2, ..., i_j, ..., i_{|\mathcal{Y}_t|}\}$$



Multi-view Modeling of Consensus:

Member-level.

$$G^m = (\mathcal{V}^m, \mathcal{E}^m, \mathbf{H}^m)$$

Item-level.

$$G^i = (\mathcal{V}^i, \mathcal{E}^i, \mathbf{A}^i)$$

$$\mathcal{E}^i = \{ (g_t, i_j) | g_t \in \mathcal{G}, i_j \in \mathcal{I}, \mathbf{Y}(t, j) = 1 \}$$

Group-level.

$$G^{g} = (\mathcal{V}^{g}, \mathcal{E}^{g}, \mathbf{A}^{g}) \quad \mathbf{A}^{g}(p, q) = \frac{|\mathcal{G}_{p} \cap \mathcal{G}_{q}| + |\mathcal{Y}_{p} \cap \mathcal{Y}_{q}|}{|\mathcal{G}_{p} \cup \mathcal{G}_{q}| + |\mathcal{Y}_{p} \cup \mathcal{Y}_{q}|}$$

$$\mathcal{E}^g = \{(g_p, g_q) | g_p, g_q \in \mathcal{G}, |\mathcal{G}_p \cap \mathcal{G}_q| \ge 1 \text{ for } |\mathcal{Y}_p \cap \mathcal{Y}_q| \ge 1\}$$

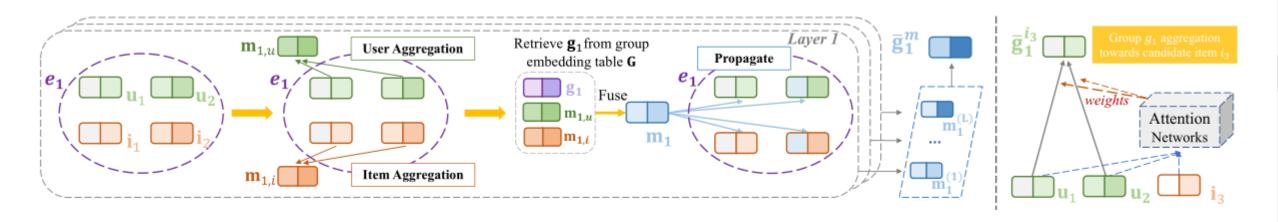


Figure 3: Comparison between our hypergraph learning-based aggregation (left) and the commonly adopted attentive aggregation (right). Ours wins in efficiency, fairness, and expressiveness with details explained in Section 4.2.2.

Member-level Hypergraph Networks:

Preference-aware hypergraph neural network:

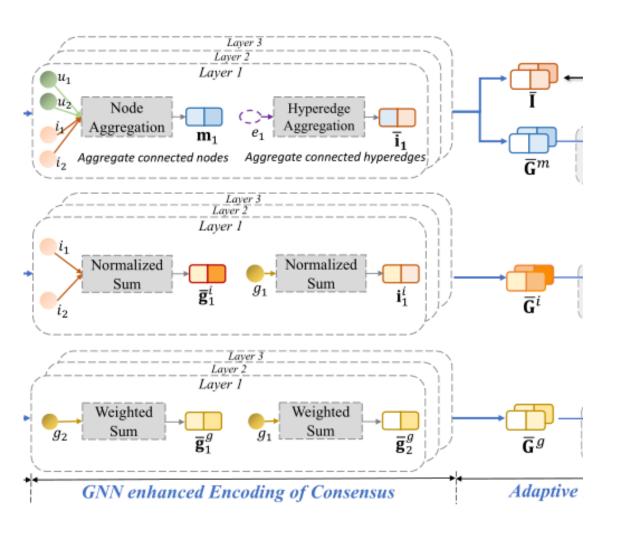
$$\mathbf{m}_{e,u} = \mathbf{AGG}_{node}(\{\mathbf{u}_s | u_s \in \mathcal{G}_e\})$$

$$\mathbf{m}_{e,i} = \mathbf{AGG}_{node}(\{\mathbf{i}_j | i_j \in \mathcal{Y}_e\})$$

$$\mathbf{m}_e = \mathbf{CONCAT}(\mathbf{m}_{e,u}, \mathbf{m}_{e,i}, \mathbf{m}_{e,i} \odot \mathbf{g}_e) \mathbf{W}^f,$$
 (1)

$$\bar{\mathbf{i}}_j = \mathbf{AGG}_{he}(\{\mathbf{m}_e | e \in \mathcal{E}_j\}), \tag{2}$$

$$\bar{\mathbf{i}}_j = \frac{1}{L+1} \sum_{l=0}^{L} \mathbf{i}_j^{(l)}, \quad \bar{\mathbf{g}}_e^m = \frac{1}{L+1} \sum_{l=0}^{L} \mathbf{m}_e^{(l)},$$



Item-level graph Networks:

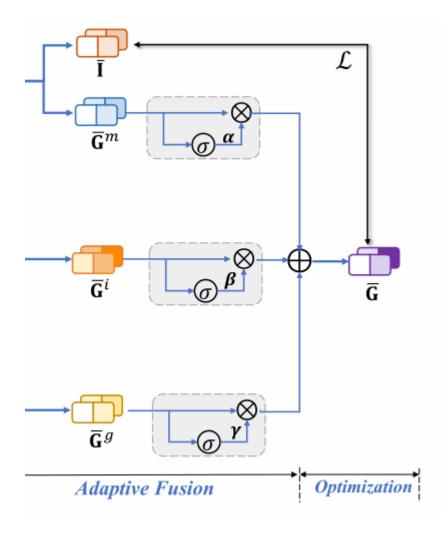
$$\mathbf{E}^{(l+1)} = \mathbf{D}^{-\frac{1}{2}} \mathbf{A}^{i} \mathbf{D}^{-\frac{1}{2}} \mathbf{E}^{(l)},$$

$$\overline{\mathbf{E}} = \frac{1}{L+1} \sum_{l=0}^{L} \mathbf{E}^{(l)} = \begin{bmatrix} \overline{\mathbf{G}}^{i} \\ \overline{\mathbf{I}}^{i} \end{bmatrix}$$

$$\overline{\mathbf{g}}_{e}^{i} = \overline{\mathbf{G}}^{l}(e,:)$$
(3)

Group-level graph Networks:

$$\overline{\mathbf{G}}^g = \frac{1}{L+1} \sum_{l=0}^{L} \mathbf{G}^{(l)}$$



Adaptive Fusion & Optimization:

$$\overline{G} = \alpha \overline{G}^m + \beta \overline{G}^i + \gamma \overline{G}^g, \tag{4}$$

where $\alpha = \sigma(\overline{G}^m W^m)$, $\beta = \sigma(\overline{G}^i W^i)$, and $\gamma = \sigma(\overline{G}^g W^g)$.

$$\mathcal{L}_{group} = -\sum_{g_t \in \mathcal{G}} \frac{1}{|\mathcal{D}_{g_t}|} \sum_{(j,j') \in \mathcal{D}_{g_t}} \ln \sigma(\hat{y}_{tj} - \hat{y}_{tj'}), \tag{5}$$

$$\hat{y}_{tj} = \mathbf{MLP}(\overline{\mathbf{g}}_t \odot \overline{\mathbf{i}}_j)$$

$$\mathcal{L}_{user} = -\sum_{u_s \in \mathcal{U}} \frac{1}{|\mathcal{D}_{u_s}|} \sum_{(j,j') \in \mathcal{D}_{u_s}} \ln \sigma(\hat{r}_{sj} - \hat{r}_{sj'}), \tag{6}$$

$$\hat{r}_{sj} = \mathbf{MLP}(\mathbf{u}_s \odot \mathbf{i}_j)$$

$$\mathcal{L} = \mathcal{L}_{group} + \mathcal{L}_{user}.$$

Table 1: Statistics of datasets.

Dataset	#Users	#Items	#Groups	#U-I interactions	#G-I interactions
Mafengwo	5,275	1,513	995	39,761	3,595
CAMRa2011	602	7,710	290	116,344	145,068

Table 2: Performance comparison of all methods on group recommendation task in terms of HR@K and NDCG@K.

Dataset	Metric	Pop	NCF	AGREE	HyperGroup	HCR	GroupIM	S ² -HHGR	CubeRec	ConsRec
Mafengwo	HR@5	0.3115	0.4701	0.4729	0.5739	0.7759	0.7377	0.7568	0.8613	0.8844
	HR@10	0.4251	0.6269	0.6321	0.6482	0.8503	0.8161	0.7779	0.9025	0.9156
	NDCG@5	0.2169	0.3657	0.3694	0.4777	0.6611	0.6078	0.7322	0.7574	0.7692
	NDCG@10	0.2537	0.4141	0.4203	0.5018	0.6852	0.6330	0.7391	0.7708	0.7794
	HR@5	0.4324	0.5803	0.5879	0.5890	0.5883	0.6552	0.6062	0.6400	0.6407
CAMRa2011	HR@10	0.5793	0.7693	0.7789	0.7986	0.7821	0.8407	0.7903	0.8207	0.8248
	NDCG@5	0.2825	0.3896	0.3933	0.3856	0.4044	0.4310	0.3853	0.4346	0.4358
	NDCG@10	0.3302	0.4448	0.4530	0.4538	0.4670	0.4914	0.4453	0.4935	0.4945

Table 3: Performance comparison of all methods on user recommendation task in terms of HR@K and NDCG@K.

Dataset	Metric	Pop	NCF	AGREE	HyperGroup	HCR	GroupIM	S ² -HHGR	CubeRec	ConsRec
Mafengwo	HR@5	0.4047	0.6363	0.6357	0.7235	0.7571	0.1608	0.6380	0.1847	0.7725
	HR@10	0.4971	0.7417	0.7403	0.7759	0.8290	0.2497	0.7520	0.3734	0.8404
	NDCG@5	0.2876	0.5432	0.5481	0.6722	0.6703	0.1134	0.4637	0.1099	0.6884
	NDCG@10	0.3172	0.5733	0.5738	0.6894	0.6937	0.1420	0.5006	0.1708	0.7107
	HR@5	0.4624	0.6119	0.6196	0.5728	0.6262	0.6113	0.6153	0.5754	0.6774
CAMRa2011	HR@10	0.6026	0.7894	0.7897	0.7601	0.7924	0.7771	0.8173	0.7827	0.8412
	NDCG@5	0.3104	0.4018	0.4098	0.4410	0.4195	0.4064	0.3978	0.3751	0.4568
	NDCG@10	0.3560	0.4535	0.4627	<u>0.5016</u>	0.4734	0.4606	0.4641	0.4428	0.5104

Table 4: Ablation study on different views with group recommendation results reported. "w/o. M", "w/o. I", and "w/o. G" refer to the variant that eliminates the member-level, itemitem, and group-level view, respectively.

Dataset	Metric	w/o. M	w/o. I	w/o. G	Full
Mafengwo	HR@5			0.8593	0.8844
	HR@10	0.8724	0.9075	0.9005	0.9156
	NDCG@5	0.7021	0.7597	0.7376	0.7692
	NDCG@10	0.7192	0.7718	0. 7510	0.7794

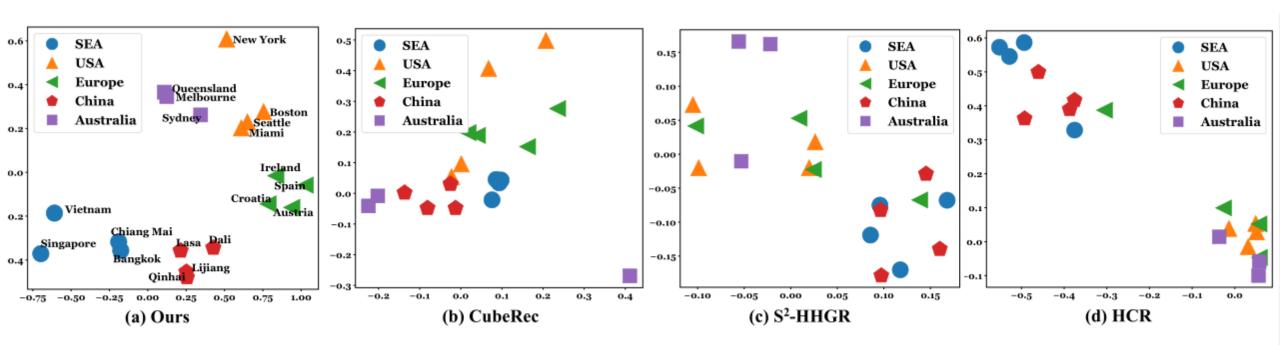


Figure 4: Visualization of learned item embeddings. We plot two dimensions of item representations on Mafengwo-S. ConsRec learns the latent properties of items as geographically similar items are close to each other in the embedding space.

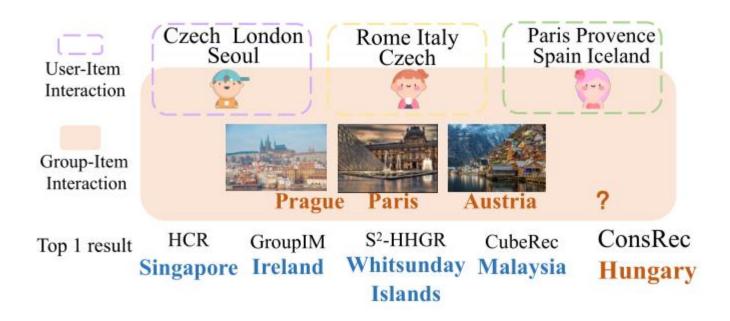


Figure 5: Case study on Mafengwo-S. Both the group and its members have visited European cities. ConsRec captures this consensus and suggests Hungary that hits the ground truth. On the contrary, HCR, GroupIM, S²-HHGR, and CubeRec are biased by one member's interests towards Iceland and recommend unsatisfying islands or coastal cities.

Table 5: Performance comparison on group recommendation task on Mafengwo-S dataset.

Metric	HCR	GroupIM	S ² -HHGR	CubeRec	ConsRec
HR@5	0.4845	0.5824	0.5928	0.6237	0.6409
HR@10	0.6099	0.6959	0.6546	0.6873	0.6993
NDCG@5	0.3947	0.4591	0.5348	0.5357	0.5447
NDCG@10	0.4353	0.4983	0.5545	0.5567	0.5642

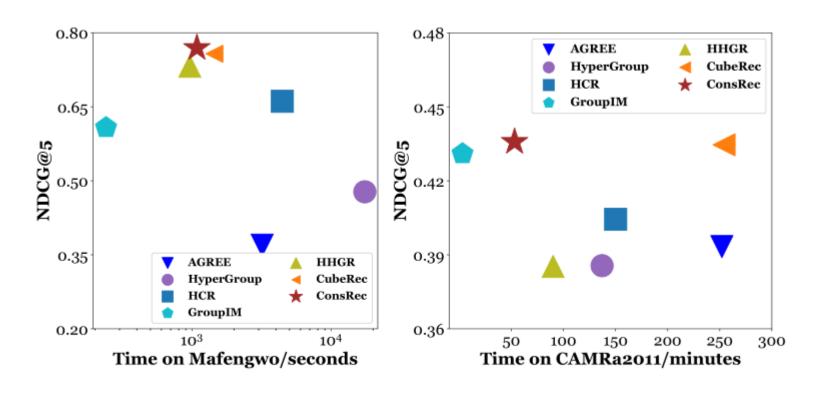


Figure 6: Efficiency Study

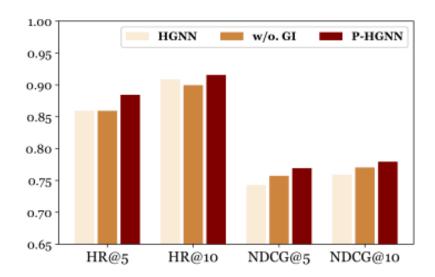


Figure 7: Ablation study on different hypergraph neural networks on Mafengwo with group recommendation results reported.

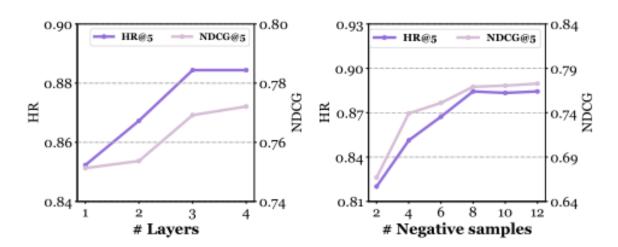


Figure 8: Parameters study on group recommendation task on Mafengwo.